Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis.
نویسندگان
چکیده
The molecular and physiological mechanisms behind the maturation and maintenance of N(2)-fixing nodules during development of symbiosis between rhizobia and legumes still remain unclear, although the early events of symbiosis are relatively well understood. Azorhizobium caulinodans ORS571 is a microsymbiont of the tropical legume Sesbania rostrata, forming N(2)-fixing nodules not only on the roots but also on the stems. In this study, 10,080 transposon-inserted mutants of A. caulinodans ORS571 were individually inoculated onto the stems of S. rostrata, and those mutants that induced ineffective stem nodules, as displayed by halted development at various stages, were selected. From repeated observations on stem nodulation, 108 Tn5 mutants were selected and categorized into seven nodulation types based on size and N(2) fixation activity. Tn5 insertions of some mutants were found in the well-known nodulation, nitrogen fixation, and symbiosis-related genes, such as nod, nif, and fix, respectively, lipopolysaccharide synthesis-related genes, C(4) metabolism-related genes, and so on. However, other genes have not been reported to have roles in legume-rhizobium symbiosis. The list of newly identified symbiosis-related genes will present clues to aid in understanding the maturation and maintenance mechanisms of nodules.
منابع مشابه
A Chemotaxis Receptor Modulates Nodulation during the Azorhizobium caulinodans-Sesbania rostrata Symbiosis.
UNLABELLED Azorhizobium caulinodans ORS571 is a free-living nitrogen-fixing bacterium which can induce nitrogen-fixing nodules both on the root and the stem of its legume host Sesbania rostrata This bacterium, which is an obligate aerobe that moves by means of a polar flagellum, possesses a single chemotaxis signal transduction pathway. The objective of this work was to examine the role that ch...
متن کاملAzorhizobium caulinodans Transmembrane Chemoreceptor TlpA1 Involved in Host Colonization and Nodulation on Roots and Stems
Azorhizobium caulinodans ORS571 is a motile soil bacterium that interacts symbiotically with legume host Sesbania rostrata, forming nitrogen-fixing root and stem nodules. Bacterial chemotaxis plays an important role in establishing this symbiotic relationship. To determine the contribution of chemotaxis to symbiosis in A. caulinodans ORS571-S. rostrata, we characterized the function of TlpA1 (t...
متن کاملLon protease of Azorhizobium caulinodans ORS571 is required for suppression of reb gene expression.
Bacterial Lon proteases play important roles in a variety of biological processes in addition to housekeeping functions. In this study, we focused on the Lon protease of Azorhizobium caulinodans, which can fix nitrogen both during free-living growth and in stem nodules of the legume Sesbania rostrata. The nitrogen fixation activity of an A. caulinodans lon mutant in the free-living state was no...
متن کاملSurvival of Azorhizobium caulinodans in the Soil and Rhizosphere of Wetland Rice under Sesbania rostrata-Rice Rotation.
The survival of indigenous and introduced strains of Azorhizobium caulinodans in flooded soil and in the rice rhizosphere, where in situ Sesbania rostrata was incorporated before the rice crop, is reported. The azorhizobia studied were both root and stem nodulating. In a pot experiment, two crop cycles each of inoculated and noninoculated Sesbania-rice were compared with two crop cycles of floo...
متن کاملLipopolysaccharides as a communication signal for progression of legume endosymbiosis.
Establishment of a successful symbiosis between rhizobia and legumes results from an elaborate molecular dialogue between both partners. Bacterial nodulation (Nod) factors are indispensable for initiating plant responses, whereas bacterial surface polysaccharides are important for infection progression and nodule development. The mutant ORS571-oac2 of Azorhizobium caulinodans, affected in its s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 73 20 شماره
صفحات -
تاریخ انتشار 2007